Transferring three-dimensional image on a two-dimensional graph - Ber7 - Сообщения
#1 Опубликовано: 08.12.2013 11:51:06
This method was suggested by the author of the "Method of Draghilev" prof. Alexei Ivanov.
1.st through the matrix of three columns (x, y, z) to construct
3d graph and select the desired Rakurs;
2.Using linear coordinate transformations turn
all points of the matrix at an angle (angles) corresponding
Rakurs and obtain a new matrix;
3. Out of three columns of the new matrix choose two and
substitute them in 2d graph;
Animation shows two first surface constructed A.Ivashev second
V.Mezentsev (Bottom). The animation is done on a flat graph.

ButKlejn.smz (4 КиБ) скачан 175 раз(а).
1.st through the matrix of three columns (x, y, z) to construct
3d graph and select the desired Rakurs;
2.Using linear coordinate transformations turn
all points of the matrix at an angle (angles) corresponding
Rakurs and obtain a new matrix;
3. Out of three columns of the new matrix choose two and
substitute them in 2d graph;
Animation shows two first surface constructed A.Ivashev second
V.Mezentsev (Bottom). The animation is done on a flat graph.


ButKlejn.smz (4 КиБ) скачан 175 раз(а).
1 пользователям понравился этот пост
Davide Carpi 08.12.2013 13:36:00
#2 Опубликовано: 28.12.2013 15:47:32
Updated.Fixed mistake in the first matrix coordinate transformation
1 пользователям понравился этот пост
Davide Carpi 31.01.2014 06:17:00
#3 Опубликовано: 16.01.2014 16:19:01
Animation spatial mechanisms
To calculate the position of the mechanism will use
techniques developed A.B.Ivanov.His work on 3d
animation mechanisms made in Mapl, publishes A.B.Ivanov
online
http://forum.exponenta.ru/viewtopic.php?t=12842
Of the examples from this site I suffered in a programming environment SMath Studio
1. Sarrus linkage 1

To calculate the position of the mechanism will use
techniques developed A.B.Ivanov.His work on 3d
animation mechanisms made in Mapl, publishes A.B.Ivanov
online
http://forum.exponenta.ru/viewtopic.php?t=12842
Of the examples from this site I suffered in a programming environment SMath Studio
1. Sarrus linkage 1

#4 Опубликовано: 30.01.2014 16:14:59
1 пользователям понравился этот пост
Davide Carpi 31.01.2014 06:16:00
#5 Опубликовано: 05.11.2014 13:35:17
1 пользователям понравился этот пост
Davide Carpi 05.11.2014 14:10:00
#6 Опубликовано: 02.02.2015 11:03:15
1.Torsion and bending Plate
2.Torsion and bending cylindrical panel
Using nonlinear coordinate transformations



Plate.smz (6 КиБ) скачан 160 раз(а).
2.Torsion and bending cylindrical panel
Using nonlinear coordinate transformations




Plate.smz (6 КиБ) скачан 160 раз(а).
4 пользователям понравился этот пост
Andrey Ivashov 26.02.2016 09:19:00, Davide Carpi 02.02.2015 20:47:00, IVR 05.02.2015 15:07:00, ioan92 26.02.2016 07:12:00
#7 Опубликовано: 26.02.2016 06:57:04
Rotation About an Arbitrary Axis in Space
The algorithm is taken from the book
. F. Rogers and J. A. Adams. Mathematical
Elements for Computer Graphics,second edition. McGraw-Hill Publishing Company,
1990,pages 121-127


Rotation2.smz (9 КиБ) скачан 126 раз(а).
The algorithm is taken from the book

Elements for Computer Graphics,second edition. McGraw-Hill Publishing Company,
1990,pages 121-127


Rotation2.smz (9 КиБ) скачан 126 раз(а).
3 пользователям понравился этот пост
#8 Опубликовано: 28.02.2016 18:17:42
Rotation2.smz ,,,, does not work Smath 5346
egamma: not defined [does not evaluate]
ex, ey, ez don't evaluate ,,,
Smath 5346 does not recognise Rotatio2 coding.
Thanks for the other ones.
Jean
egamma: not defined [does not evaluate]
ex, ey, ez don't evaluate ,,,
Smath 5346 does not recognise Rotatio2 coding.
Thanks for the other ones.
Jean
#9 Опубликовано: 28.02.2016 21:30:29
For SMath 5890 file works fine. For SMath 5346 file can not verify.
#10 Опубликовано: 15.11.2016 16:29:15
Building the surface deflection a Circular Plate for periodically applied load (Smath 0.98.5935)


Timoshenko.sm (389 КиБ) скачан 156 раз(а).


Timoshenko.sm (389 КиБ) скачан 156 раз(а).
1 пользователям понравился этот пост
Davide Carpi 15.11.2016 19:34:00
#11 Опубликовано: 16.11.2016 00:10:08
Thanks: very nice. That's how you can tell the age of the lady !
#12 Опубликовано: 23.02.2017 06:07:26
1 пользователям понравился этот пост
Davide Carpi 23.02.2017 21:15:00
#13 Опубликовано: 19.04.2017 04:46:02
Dome of Viviani Windows
The dome is made out of a variable number of Viviani curves generated by the intersection of the
hemisphere and the moving cylinder.A real-life application of this can be seen at the Osaka Maritime Museum
https://en.wikipedia.org/wiki/Osaka_Maritime_Museum


V4.sm (23 КиБ) скачан 106 раз(а).
The dome is made out of a variable number of Viviani curves generated by the intersection of the
hemisphere and the moving cylinder.A real-life application of this can be seen at the Osaka Maritime Museum
https://en.wikipedia.org/wiki/Osaka_Maritime_Museum


V4.sm (23 КиБ) скачан 106 раз(а).
3 пользователям понравился этот пост
frapuano 19.04.2017 09:15:00, NDTM Amarasekera 19.04.2017 12:14:00, Davide Carpi 23.04.2017 19:33:00
#14 Опубликовано: 23.04.2017 06:24:49
Gateshead Millennium Bridge
http://en.wikipedia.org/wiki/Gateshead_Millennium_Bridge
The arch and the bridge deck can be rotated together around large bearings, lifting the bridge deck to let small ships and boats pass underneath. This is the essential idea behind the Gateshead Millennium Bridge, a pedestrian and cyclist tilt bridge. It spans the River Tyne in England between Gateshead on the south bank and Newcastle upon Tyne on the north bank.

Most.sm (34 КиБ) скачан 104 раз(а).
http://en.wikipedia.org/wiki/Gateshead_Millennium_Bridge
The arch and the bridge deck can be rotated together around large bearings, lifting the bridge deck to let small ships and boats pass underneath. This is the essential idea behind the Gateshead Millennium Bridge, a pedestrian and cyclist tilt bridge. It spans the River Tyne in England between Gateshead on the south bank and Newcastle upon Tyne on the north bank.

Most.sm (34 КиБ) скачан 104 раз(а).
1 пользователям понравился этот пост
Davide Carpi 23.04.2017 19:33:00
#15 Опубликовано: 26.04.2017 10:00:02
4 пользователям понравился этот пост
NDTM Amarasekera 26.04.2017 11:37:00, Arie 26.04.2017 11:13:00, Davide Carpi 26.04.2017 19:14:00, frapuano 27.04.2017 01:28:00
#17 Опубликовано: 05.06.2017 14:09:00
Thanks Ber7,
I love those things that move, but they dilute my "winter chicken brain" !!!
You may want to roll the torus. Very nice in Mathcad, unfortunately, can't
attach the animation because XP Pro. does not support any of the Mathcad "Codecs".
Cheers ... Jean
Torus.sm (155 КиБ) скачан 89 раз(а).
I love those things that move, but they dilute my "winter chicken brain" !!!
You may want to roll the torus. Very nice in Mathcad, unfortunately, can't
attach the animation because XP Pro. does not support any of the Mathcad "Codecs".
Cheers ... Jean
Torus.sm (155 КиБ) скачан 89 раз(а).
#18 Опубликовано: 08.10.2017 16:39:32
Rotation around an arbitrary axis defined by two points.Continuation
https://en.smath.info/forum/yaf_postsm30728_Transferring-three-dimensional-image-on-a-two-dimensional--flat--graph-by-prof--A-B-Ivanov.aspx#post30728

Rotation3.sm (35 КиБ) скачан 97 раз(а).
https://en.smath.info/forum/yaf_postsm30728_Transferring-three-dimensional-image-on-a-two-dimensional--flat--graph-by-prof--A-B-Ivanov.aspx#post30728

Rotation3.sm (35 КиБ) скачан 97 раз(а).
1 пользователям понравился этот пост
Davide Carpi 10.10.2017 11:52:00
#19 Опубликовано: 09.04.2018 15:42:55
1 пользователям понравился этот пост
Davide Carpi 10.04.2018 04:11:00
#20 Опубликовано: 05.06.2018 12:31:28
The spiral curved along a given 3d curve


Spiral1.sm (21 КиБ) скачан 90 раз(а).
Spiral4.sm (20 КиБ) скачан 88 раз(а).
Spiral5.sm (19 КиБ) скачан 82 раз(а).



Spiral1.sm (21 КиБ) скачан 90 раз(а).
Spiral4.sm (20 КиБ) скачан 88 раз(а).
Spiral5.sm (19 КиБ) скачан 82 раз(а).
1 пользователям понравился этот пост
Davide Carpi 05.05.2020 15:56:00
-
Новые сообщения
-
Нет новых сообщений