By Gilberto E. Urroz, Ph.D., P.E.
January 2010
1 - The Newton-Raphson for solving single equations:
--
The Newton-Raphsonmethod used for solving an equation of the form

$$
f(x)=0
$$

requires the knowledge of the derivative f'(x). This can be easily accomplished in SMath Studio using the "Derivative"option in the "Functions" palette:

$$
f p(x)=\frac{d}{d x} f(x)
$$

Given an initial guess of the solution, $x=x_{0}$, the solution can be approximated by the iterative calculation:

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

for $k=0,1, \ldots$

The iteration continues until either the solution converges, i.e., $\left|f\left(x_{k}+1\right)\right|<\varepsilon$, or a certain large number of iterations are performed without convergence, i.e., k>n max

Example: Solve the equation: $x^{2}-2 \cdot x-5=0$

Solution: A graph of the function can help us find where the --------- solutions may be located:

$$
\text { Define the function: } \quad f(x):=x^{2}-2 \cdot x-5
$$

Produce a graph of $f(x):$

f(x)

The graph shows solutions near $x=-2$ and $x=3$. We can implement the solution using the Newton-Raphson method as follows:

$$
f p(x):=\frac{d}{d x} f(x) \quad f p(x) \rightarrow 2 \cdot(-1+x)
$$

Parameters of the solution are: $\quad \varepsilon:=1.0 \cdot 10^{-6} \quad$ nmax:=100
First solution:
Starting with a guess of $x G:=-2.5$
we find a solution by using the following iterative procedure:
$k:=0$
while $((k \leq \operatorname{nmax}) \wedge(|f(x G)|>\varepsilon))$
$\left\lvert\, \begin{aligned} & x G p 1:=x G-\frac{f(x G)}{f p(x G)} \\ & k:=k+1 \\ & x G:=x G p 1\end{aligned}\right.$

$\mathrm{xG}=-1.4495$	This is the solution found
$\mathrm{k}=4$	After this many iterations
$\mathrm{f}(\mathrm{xG})=2.1427 \cdot 10^{-11}$	The function at the solution point

Second solution:
Starting with a guess of $x G:=4.2$
we find a solution by using the following iterative procedure:
$k:=0$

$$
\begin{aligned}
& \text { while }((k \leq \operatorname{nmax}) \wedge(|f(x G)|>\varepsilon)) \\
& \qquad \begin{array}{l}
x G p 1:=x G-\frac{f(x G)}{f p(x G)} \\
k:=k+1 \\
x G:=x G p 1
\end{array}
\end{aligned}
$$

$x G=3.4495$

$k=4$

$f(x G)=2.2529 .10^{-13}$

This is the solution found
After this many iterations
The function at the solution point

2 - Solution to equations with function "solve":

Most equations can be solved using function "solve" in SMath Studio. For the present case we'll have:

$$
\text { solve }(f(x)=0, x)=\binom{-1.4495}{3.4495}
$$

Alternatively, you can use:

$$
\text { solve }\left(x^{2}-2 \cdot x-5=0, x\right)=\binom{-1.4495}{3.4495}
$$

A system of n equations in n unknowns can be represented as:

$$
\begin{gathered}
f 1\left(x_{1}, x_{2} \cdots x_{n}\right)=0 \\
f 2\left(x_{1}, x_{2} \cdots x_{n}\right)=0 \\
x_{n}\left(x_{1}, x_{2} \cdot x_{n}\right)=0
\end{gathered}
$$

or simply, $f(x)=0$, with

$$
f(x)=\left(\begin{array}{c}
f 1\left(x_{1}, x_{2} \ldots x_{n}\right) \\
f 2\left(x_{1}, x_{2} \ldots x_{n}\right) \\
f v_{2}\left(x_{1}, x_{2} . x_{n}\right)
\end{array}\right)=\left(\begin{array}{c}
f 1(x) \\
f 2(x) \\
\cdot \\
f n(x)
\end{array}\right)
$$

The variable x is defined as the vector:

$$
x=\left(\begin{array}{cc}
x & 1 \\
x & 2 \\
\cdot \\
x & \\
& n
\end{array}\right)
$$

We can provide an initial guess for the solution, x_{0}, and proceed with an iterative process defined by the formula:

$$
x_{k+1}=x_{k}-J\left(x_{k}\right)^{-1} \cdot f\left(x_{k}\right)
$$

for $k=0,1, \ldots$ In this formula, $J\left(x_{k}\right)$, is the Jacobian matrix of the function defined as [to be 100% correct the derivatives in this matrix should be partial derivatives]:

$$
J\left(x_{k}\right)=\left(\begin{array}{ccc}
\frac{d y_{1}}{d x_{1}} & \frac{d y_{1}}{d x_{2}} & \cdot \frac{d y_{1}}{d x_{n}} \\
\frac{d y_{2}}{d x_{1}} & \frac{d y_{2}}{d x_{2}} & \cdot \\
\frac{d y_{2}}{d x_{n}} \\
\cdot & \cdot & \cdot \\
\frac{d y_{n}}{d x_{1}} & \frac{d y_{n}}{d x_{2}} & \cdot \frac{d y_{n}}{d x_{n}}
\end{array}\right)
$$

Example:

How to calculate the Jacobian matrix of a system of three equations. Given the system of three equations:
$f(x):=\left(\begin{array}{c}x_{1}+x_{2}+x_{3}-6 \\ x_{1} \cdot x_{2} \cdot x_{3}-6 \\ x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{3}-14\end{array}\right)$

This is obvious, but could useful for larger functions:
$\mathrm{n}:=\operatorname{length}(\mathrm{f}(\mathrm{x}))$
$\mathrm{n}=3$

The following nested "for" loops calculate the elements of the jacobian matrix as the elements "jac[i,j]":

```
for i\in1..n
    for jel..n
```


The following definition creates the function "Jacobi" that represents the Jacobian matrix of the function $f(x)$ shown earlier:
Jacobi $(x):=$ jac

$$
\text { Jacobi }(x) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 \\
x_{2} \cdot x_{3} x_{1} \cdot x_{3} & x_{1} \cdot x_{2} \\
2 \cdot x_{1} & 2 \cdot x_{2} & 3 \cdot x_{3}
\end{array}\right)
$$

Note: This approach for calculating the Jacobian matrix of a vector function was made available by Radovan Omorjan (omorr) in the SMath Studio wiki page: http://smath.info/wiki/diff.ashx

Generalized Newton-Raphsonmethod for solving a system of equations:

The parameters of the solution are: nmax:=100

$$
\varepsilon:=1 \cdot 10^{-20}
$$

The iterative process for the solution is expressed as:

$$
\mathrm{k}:=0
$$

while $((\mathrm{k} \leq \operatorname{nmax}) \wedge(\max (\mathrm{f}(\mathrm{xG}))>\varepsilon))$ $\mathrm{xGp1}:=\mathrm{xG}-$ Jacobi $(\mathrm{xG})^{-1} \cdot \mathrm{f}(\mathrm{xG})$ $k:=k+1$
$\mathrm{xG}:=\mathrm{xGp} 1$
A solution is found after these many iterations:
$\mathrm{k}=15$

Here's a solution:
And the function at that point:

$$
f(x G)=\left(\begin{array}{l}
-1.0161 \cdot 10^{-14} \\
-3.9933 \cdot 10^{-14} \\
-2.1316 \cdot 10^{-14}
\end{array}\right)
$$

Note: The function representing the system of equations solved above, namely,
$f(x):=\left(\begin{array}{c}x_{1}+x_{2}+x_{3}-6 \\ x_{1} \cdot x_{2} \cdot x_{3}-6 \\ x_{1}^{2}+x_{2}{ }^{2}+x_{3}^{3}-14\end{array}\right)$
can be thought of representing the system of equations:

$$
\begin{array}{ll}
x+y+z-6=0 & \text { or } \\
x \cdot y \cdot z-6=0 & x+y+z=6 \\
x^{2}+y^{2}+z^{2}-14=0 & x^{2}+y^{2}+z^{2}=14
\end{array}
$$

with the variable substitution: $x_{1}=x, x_{2}=y$, and $x_{3}=z$.

