The Newton-Raphson method for solving equations

By Gilberto E. Urroz, Ph.D., P.E. January 2010

1 - The Newton-Raphson for solving single equations:

The Newton-Raphson method used for solving an equation of the form

. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

f(x) = 0

requires the knowledge of the derivative f'(x). This can be easily accomplished in SMath Studio using the "Derivative" option in the "Functions" palette:

$$fp(x) = \frac{d}{dx} f(x)$$

Given an initial guess of the solution, $\, {\rm x=x_{\, 0}}$, the solution can be approximated by the iterative calculation:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

for k = 0, 1, ...

The iteration continues until either the solution converges, i.e.,

 $\left|f\left(x_{k+1}\right)\right| < \epsilon$, or a certain large number of iterations are performed without convergence, i.e., k>n max

Solution: A graph of the function can help us find where the ----- solutions may be located:

Define the function:

 $f(x) := x^2 - 2 \cdot x - 5$

The graph shows solutions near x = -2 and x = 3. We can implement the solution using the Newton-Raphson method as follows:

solve $(f(x) = 0, x) = \begin{pmatrix} -1.4495 \\ 3.4495 \end{pmatrix}$

Alternatively, you can use:

solve $(x^2 - 2 \cdot x - 5 = 0, x) = \begin{pmatrix} -1.4495 \\ 3.4495 \end{pmatrix}$

3 - The Newton-Raphson method for a system of equations:

A system of n equations in n unknowns can be represented as:

$$f1 (x_{1}, x_{2} \dots x_{n}) = 0$$

$$f2 (x_{1}, x_{2} \dots x_{n}) = 0$$

$$\dots$$

$$fn (x_{1}, x_{2} \dots x_{n}) = 0$$

or simply, f(x) = 0, with

$$f(x) = \begin{pmatrix} f1 \begin{pmatrix} x & 1 & x & 2 & \cdots & x \\ f2 \begin{pmatrix} x & 1 & x & 2 & \cdots & x \\ 1 & x & 2 & \cdots & x \\ & & & & \\ fn \begin{pmatrix} x & 1 & x & 2 & \cdots & x \\ & & & & \\ fn \begin{pmatrix} x & 1 & x & 2 & \cdots & x \\ & & & & \\ fn \begin{pmatrix} x \end{pmatrix} \end{pmatrix} = \begin{pmatrix} f1 \begin{pmatrix} x \\ 1 \end{pmatrix}$$

The variable x is defined as the vector:

We can provide an initial guess for the solution, $\rm x_{0}$, and proceed with an iterative process defined by the formula:

$$x_{k+1} = x_k - J(x_k)^{-1} f(x_k)$$

for $k=0,1,\ldots$ In this formula, $J\begin{pmatrix}x \\ k\end{pmatrix}$, is the Jacobian matrix of the function defined as [to be 100% correct the derivatives in this matrix should be partial derivatives]:

$J(x_k) =$	$\frac{dy_{1}}{dx_{1}}$ $\frac{dy_{2}}{dx_{1}}$	$\frac{dy_{1}}{dx_{2}}$ $\frac{dy_{2}}{dx_{2}}$	•	$\frac{dy_1}{dx_n}$ $\frac{dy_2}{dx_n}$
	$\frac{\frac{dy_n}{dx_1}}$	$\frac{\frac{dy_n}{dx_2}}$	•	$\frac{dy_n}{dx_n}$

How to calculate the Jacobian matrix of a system of three equations. Given the system of three equations:

This is obvious, but could useful for larger functions: n=length(f(x))

The following nested "for" loops calculate the elements of the jacobian matrix as the elements "jac[i,j]":

for
$$i \in 1 ... n$$

for $j \in 1 ... n$
jac $_{ij} \coloneqq \frac{d}{dx_{j}} f(x)_{i}$

The following definition creates the function "Jacobi" that represents the Jacobian matrix of the function f(x) shown earlier:

k=15

Here's a solution: And the function at that point:

$$xG = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$f(xG) = \begin{pmatrix} -1.0161 \cdot 10^{-14} \\ -3.9933 \cdot 10^{-14} \\ -2.1316 \cdot 10^{-14} \end{pmatrix}$$

Note: The function representing the system of equations solved above, namely,

	$\left(\begin{array}{c} x_{1} + x_{2} + x_{3} - 6 \end{array} \right)$				
f(x) :=	x 1 · x 2 · x 3 - 6				
	$x_{1}^{2} + x_{2}^{2} + x_{3}^{3} - 14$				

can be thought of representing the system of equations:

x+y+z-6 ≡ 0		x + y + z ≡ 6
x·y·z-6 = 0	or	x·y·z = 6
$x^{2} + y^{2} + z^{2} - 14 = 0$		$x^{2} + y^{2} + z^{2} = 14$

with the variable substitution: $x_1 = x$, $x_2 = y$, and $x_3 = z$.
