Bi-linear interpolation is an extension of linear interpolation for interpolating functions of two variables (e.g., x and y) on a regular 2D grid. The procedure, below, performs linear interpolation first in one direction, and then again in the other direction.
Note that although each step is linear, the interpolation as a whole is not linear but instead quadratic.

1. The matrix, T, below contains a table of values. The x values are contained in elements 2 through 5 of row 1; the y values are contained in rows 2 through 5 of column 1 . Assume element 1,1 is an empty dummy variable. T is a sample matrix; the code below would work for any size matrix.

$$
T:=\left(\begin{array}{ccccc}
0 & 2 & 4 & 8 & 10 \\
1 & .3 & .45 & .6 & .6 \\
2 & .4 & .5 & .62 & .65 \\
3 & .4 & .48 & .6 & .61 \\
4 & .38 & .45 & .55 & .59
\end{array}\right)
$$

2. The following custom user function performs bi-linear interpolation of the matrix, M, based on the arguments x and y.

$$
\operatorname{minterp}(x, y, M):=\left\lvert\, \begin{aligned}
& A:=\operatorname{submatrix}(M, 1,1,2, \operatorname{cols}(M)) \\
& B:=\operatorname{submatrix}(M, 2, \operatorname{rows}(M), 1,1) \\
& C:=\operatorname{submatrix}(M, 2, \operatorname{rows}(M), 2, \operatorname{cols}(M)) \\
& \text { for je1, } 2 \ldots \operatorname{length}(A) \\
& \quad C C_{j}:=\operatorname{linterp}(B, \operatorname{submatrix}(C, 1, \operatorname{rows}(C), j, j), y) \\
& \text { linterp }(A T, C C, x)
\end{aligned}\right.
$$

3. Example application

ANS:=minterp $(3,2, T)$

ANS $=0.45$

