
[1]. The diagram below shows the outlet from a water drainage system
consisting of a main line (1) and a secondary line (2) draining through
an outlet pipeline (3) located downstream from a pipeline expansion.
The main and secondary lines are flowing full (i.e., under pressurized
conditions). The diameters of the main line (1) and of the secondary
line (2) are 2.0 ft and 1.0 ft, respectively. At the outlet pipeline (3)
the flow is under open-channel conditions, and the water depth there is
half the diameter of the pipeline. The flow velocities at sections (1)
and (2) are 2.5 ft/s and 3.2 ft/s, respectively. (a) Determine the
total discharge draining out of the main pipeline at section (3);
(b) Determine the flow velocity at section (3);
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[2] A Venturi meter is placed on a pipe at an angle of 45o,
as shown in the figure below. (a) Using the manometer
equation, determine the pressure difference Δp = p2 – p1,
in psi. (b) If the diameters of the Venturi meter are
D1 = 8 in and D2 = 4 in, determine the discharge through
the Venturi meter. Neglect all energy losses.

Manometer equation:
-------------------
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The term "62.4*y" is cancelled, thus the equation reduces to:
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Solution (a): 3.1524Δp psi psi
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[3] The figure below shows a pump P lifting water from a pond
through a 6-in-diameter suction pipeline and delivering it at
a velocity of 2.5 fps through a 12-in-diameter discharge
pipeline. The suction pipeline is provided by a trash screen,
S1, with a minor loss coefficient KS1 = 0.6, and one elbow,
E1, with a minor loss coefficient KE1 = 1.2. As shown in the
figure, the delivery pipeline is fitted with two elbows,
E2 and E3, with discharge coefficients KE2 = KE3 = 0.8.
The pump-pipeline system is provided with two pressure gages:
G1, located in the suction end of the pump, and G2, located
after the second elbow in the discharge pipeline and 3.5 ft
above the pump. Gage G2 shows a reading of 2.0 psi.
Determine (a) the power that the pump delivers to the flow
in horsepower; and (b) the pressure in gage G1 in psi.
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Energy losses:
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The minor losses in the screen and elbows are calculated
using the equation:
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where Km is the corresponding minor loss coefficient and
V is the mean velocity in the pipeline where the fitting
(screen, or elbow) is located. The friction losses in a
pipeline of length L and diameter D are calculated using
the equation:

Point (A): surface of pond, Point (B): location of gage G2
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Total minor losses(A)-(B): hE3hE2hE1hS1hm 2.9503hm ft

Total friction losses (A)-(B): hf2hf1hf 0.6941hf ft

where f is a friction factor, and V is the velocity in
the pipeline. For the 6-in pipeline in the figure the
friction factor is f6 = 0.021, while for the 12-in
pipeline the friction factor is f12 = 0.012.

Energy equation (A)-(B):
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Point (C) : location of gage G1
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Problem [4]. (Take home). The figure below shows a 90o reducing
elbow located in a vertical plane that delivers water to an
outlet at section (2) open to the atmosphere. The diameters
of sections (1) and (2) are 2.0 m and 1.0 m, respectively.
A pressure gage at section (1) reads a value of 200.0 kPa.
Determine (a) the water discharge through the elbow, Q;
(b) the x-component of the force that the flowing water
applies on the elbow; and, (c) the y-component of the force
that the flowing water applies on the elbow. Assume negligible
energy losses.
-------------------------------------------------------------->

NOTE: The volume of water contained within sections (1) and
(2) is not known, therefore, you need to provide a reasonable
guesstimate for this volume from the information in the figure
(e.g., using two cylinders). The volume of water between
sections (1) and (2) is required to estimate the weight of
the water for the momentum equation.

------------------------------------------------------------
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Energy (1)-(2) with no losses, i.e., Bernoulli's eqn:
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Solving for V2:
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