[1]. The diagram below shows the outlet from a water drainage system consisting of a main line (1) and a secondary line (2) draining through an outlet pipeline (3) located downstream from a pipeline expansion. The main and secondary lines are flowing full (i.e., under pressurized conditions). The diameters of the main line (1) and of the secondary line (2) are 2.0 ft and 1.0 ft , respectively. At the outlet pipeline (3) the flow is under open-channel conditions, and the water depth there is half the diameter of the pipeline. The flow velocities at sections (1) and (2) are $2.5 \mathrm{ft} / \mathrm{s}$ and $3.2 \mathrm{ft} / \mathrm{s}$, respectively. (a) Determine the total discharge draining out of the main pipeline at section (3);
(b) Determine the flow velocity at section (3);

Solution (a):
$\mathrm{Q} 3:=\mathrm{Q} 1+\mathrm{Q} 2 \quad \mathrm{Q} 3=10.3673 \mathrm{cfs}$

From the figure: D3:= $2 \cdot 1.5 \mathrm{ft}$
A3: $=\frac{1}{2} \cdot\left(\frac{\pi \cdot D 3^{2}}{4}\right) \quad$ A3 $=3.5343 \mathrm{ft}{ }^{2}$

Solution (b):
$\mathrm{V} 3:=\frac{\mathrm{Q} 3}{\mathrm{~A} 3} \quad \mathrm{~V} 3=2.9333 \frac{\mathrm{ft}}{\mathrm{s}}$

$$
\mathrm{p} 2+62 \cdot 4 \cdot\left(\frac{8}{12}\right) \cdot \sin \left(\frac{\pi}{4}\right)+62.4 \cdot \mathrm{y}+13.56 \cdot 62 \cdot 4 \cdot\left(\frac{6.5}{12}\right)-62.4 \cdot\left(\frac{6.5}{12}\right)-62.4 \cdot \mathrm{y}=\mathrm{p} 1
$$

Energy terms in points (1) and (2)

Point (1): Point (2):
$z 1:=0 \quad z 2:=z 1+\left(\frac{8}{12}\right) \cdot \sin \left(\frac{\pi}{4}\right) \quad$, $. e ., \quad z 2=0.4714 \mathrm{ft}$, and $\Delta z=z 2-z 1=0.4712 \mathrm{ft}$
$\mathrm{p} 1=$? $\quad \mathrm{p} 2=$? We do know, that $\quad \mathrm{p}=\mathrm{p} 2-\mathrm{p} 1=-453.9436 \mathrm{psf}$
$\mathrm{V} 1=$? $\quad \mathrm{V} 2=? \quad$ We do know, that $\mathrm{V} 2=\left(\frac{\mathrm{D} 1}{\mathrm{D} 2}\right)^{2} \cdot \mathrm{~V} 1$
so, that $\frac{\mathrm{V} 2^{2}}{2 \cdot g}-\frac{\mathrm{V} 1^{2}}{2 \cdot g}=\frac{\mathrm{V} 1^{2}}{2 \cdot g} \cdot\left(\left(\frac{\mathrm{~V} 2}{\mathrm{~V} 1}\right)^{2}-1\right)=\frac{\mathrm{V} 1^{2}}{2 \cdot \mathrm{~g}} \cdot\left(\left(\frac{\mathrm{D} 1}{\mathrm{D} 2}\right)^{4}-1\right)$

Bernoulli Equation (1)-(2): $z 1+\frac{p 1}{\gamma}+\frac{V 1^{2}}{2 \cdot g}=z 2+\frac{p 2}{\gamma}+\frac{V 2^{2}}{2 \cdot g}$

$$
(z 2-z 1)+\left(\frac{p 2-p 1}{\gamma}\right)+\left(\frac{V 2^{2}}{2 \cdot g}-\frac{V 1^{2}}{2 \cdot g}\right)=0
$$

i.e., $\quad \Delta z+\frac{\Delta p}{\gamma}+\frac{V 1^{2}}{2 \cdot g} \cdot\left(\left(\frac{D 1}{D 2}\right)^{4}-1\right)=0$
with $\Delta z:=z 2-z 1$ i.e, $\Delta z=0.4714, \Delta p=-453.9436 \mathrm{psf}$
$D 1:=\frac{8}{12} \mathrm{ft}$, or, $D 1=0.6667 \mathrm{ft}$, also, $D 2:=\frac{4}{12} \mathrm{ft}$, or, $\mathrm{D} 2=0.3333 \mathrm{ft}$
$\mathrm{V}:=62.4 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$ and, $\mathrm{g}:=32.2 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$, we solve for V1 by using:
solve $\left(\Delta z+\frac{\Delta \mathrm{p}}{\gamma}+\frac{\mathrm{V} 1^{2}}{2 \cdot g} \cdot\left(\left(\frac{\mathrm{D} 1}{\mathrm{D} 2}\right)^{4}-1\right)=0, \mathrm{~V} 1\right)=\binom{-5.4045}{5.4045}$
Select: $V 1:=5.4045 \frac{\mathrm{ft}}{\mathrm{s}}$, then $\mathrm{Q}:=\mathrm{V} 1 \cdot\left(\frac{\pi \cdot \mathrm{D} 1^{2}}{4}\right)$, i.e.,
Solution (b): $\quad Q=1.8865$ cfs
[3] The figure below shows a pump P lifting water from a pond through a 6-in-diameter suction pipeline and delivering it at a velocity of 2.5 fps through a 12-in-diameterdischarge pipeline. The suction pipeline is provided by a trash screen, S1, with a minor loss coefficient KS1 = 0.6, and one elbow, E1, with a minor loss coefficient KE1 $=1.2$. As shown in the figure, the delivery pipeline is fitted with two elbows, E2 and E3, with discharge coefficients $\mathrm{KE} 2=\mathrm{KE} 3=0.8$. The pump-pipeline system is provided with two pressure gages: G1, located in the suction end of the pump, and G2, located after the second elbow in the discharge pipeline and 3.5 ft above the pump. Gage G2 shows a reading of 2.0 psi. Determine (a) the power that the pump delivers to the flow in horsepower; and (b) the pressure in gage G1 in psi.

$\mathrm{D} 1:=\frac{6}{12} \mathrm{ft} \quad$, i.e., $\mathrm{D} 1=0.5 \mathrm{ft}$
$D 2:=\frac{12}{12}$ ft \quad i.e., $D 2=1 \quad$ ft
$V 2:=2.5 \frac{f t}{s} \quad g:=32.2 \frac{f t}{2} \quad V:=62.4 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$
From continuity: $\quad \frac{\pi \cdot D 1^{2}}{4} \cdot \mathrm{~V} 1=\frac{\pi \cdot \mathrm{D} 2^{2}}{4} \cdot \mathrm{~V} 2$
$\mathrm{V} 1:=\left(\frac{\mathrm{D} 2}{\mathrm{D} 1}\right)^{2} \cdot \mathrm{~V} 2 \quad \mathrm{~V} 1=10 \frac{\mathrm{ft}}{\mathrm{s}}$

Energy losses:

Minor losses:

$$
\begin{aligned}
& \mathrm{KS} 1:=0.6 \quad \mathrm{KE} 1:=1.2 \quad \mathrm{KE} 2:=0.8 \quad \mathrm{KE} 3:=0.8 \\
& \mathrm{hS} 1:=\mathrm{KS} 1 \cdot \frac{\mathrm{V1}{ }^{2}}{2 \cdot \mathrm{~g}} \quad \mathrm{hS} 1=0.9317 \mathrm{ft} \\
& \mathrm{hE} 1:=\mathrm{KE} 1 \cdot \frac{\mathrm{V1} 1^{2}}{2 \cdot \mathrm{~g}} \quad \mathrm{hE} 1=1.8634 \mathrm{ft} \\
& \mathrm{hE} 2:=\mathrm{KE} 2 \cdot \frac{\mathrm{~V} 2^{2}}{2 \cdot \mathrm{~g}} \quad \mathrm{hE} 2=0.0776 \mathrm{ft} \\
& \mathrm{hE} 3:=\mathrm{KE} 3 \cdot \frac{\mathrm{~V} 2^{2}}{2 \cdot g} \quad \mathrm{hE} 3=0.0776 \mathrm{ft}
\end{aligned}
$$

Friction losses:

$$
\begin{array}{llll}
\mathrm{L} 1:=1.2+6.3+3.0 & \text { i.e., } & \mathrm{L} 1=10.5 \mathrm{ft} & \mathrm{f} 1:=0.021 \\
\mathrm{~L} 2:=4.5+3.5 & \text { i.e., } & \mathrm{L} 2=8 \mathrm{ft} & \mathrm{f} 2:=0.012
\end{array}
$$

$\mathrm{hfl}:=\mathrm{f} 1 \cdot \frac{\mathrm{~L} 1}{\mathrm{D} 1} \cdot \frac{\mathrm{~V} 1^{2}}{2 \cdot g} \quad$ i.e., $\mathrm{hf} 1=0.6848 \mathrm{ft}$

$$
\mathrm{hm}=\mathrm{Km} \cdot \frac{\mathrm{~V}^{2}}{2 \cdot \mathrm{~g}}
$$

where Km is the corresponding minor loss coefficient and V is the mean velocity in the pipeline where the fitting (screen, or elbow) is located. The friction losses in a pipeline of length L and diameter D are calculated using the equation:

$$
h f=f \cdot \frac{L}{D} \cdot \frac{V^{2}}{2 \cdot g}
$$

where f is a friction factor, and V is the velocity in the pipeline. For the 6-in pipeline in the figure the friction factor is $f 6=0.021$, while for the 12 -in pipeline the friction factor is $f 12=0.012$.

Point (C) : location of gage G1
$\mathrm{zC}:=6.3 \mathrm{ft} \quad \mathrm{VC}:=\mathrm{V} 1 \quad \mathrm{VC}=10 \mathrm{fps} \quad \mathrm{pC}=?$

Minor losses (A)-(C): hm:=hS1+hE1 hm=2.795 ft

Friction losses (A)-(C): hf:=hf1 hf=0.6848 ft
Energy equation (A) - (C):

$$
\begin{aligned}
& z A+\frac{p A}{\gamma}+\frac{V A A^{2}}{2 \cdot g}-h m-h f=z C+\frac{p C}{\gamma}+\frac{V C^{2}}{2 \cdot g} \\
& p C:=\gamma \cdot\left(z A+\frac{p A}{\gamma}+\frac{V A A_{2}^{2}}{2 \cdot g}-h m-h f-\left(z C+\frac{V^{2}}{2 \cdot g}\right)\right) \\
& \frac{p C}{\gamma}=-11.3326 f t \quad p C=-707.1548 \mathrm{psf} \\
& p C p s i:=\frac{p C}{144} \quad \mathrm{pC} \mathrm{psi=-4.9108psi}
\end{aligned}
$$

$$
\mathrm{hf} 2:=\mathrm{f} 2 \cdot \frac{\mathrm{~L} 2}{\mathrm{D} 2} \cdot \frac{\mathrm{~V} 2^{2}}{2 \cdot \mathrm{~g}} \quad \text { i.e., } \mathrm{hf} 2=0.0093 \mathrm{ft}
$$

Point (A) : surface of pond, Point (B) : location of gage G2

$$
\begin{array}{rlll}
V A:=0 \quad \mathrm{pA}:=0 & \mathrm{zA}:=0 \mathrm{VB}:=\mathrm{V} 2, \text { i.e., } \mathrm{VB}=2.5 \frac{\mathrm{ft}}{\mathrm{~s}} & \mathrm{pB}:=2.144 \\
\mathrm{zB}:=6.3+3.5 & \text { i.e., } \mathrm{zB}=9.8 \quad \mathrm{ft} & \mathrm{pB}=288 \mathrm{psf}
\end{array}
$$

Total minor losses (A) - (B) : hm:=hS1+hE1+hE2+hE3 hm=2.9503 ft Total friction losses (A) - (B) : hf:=hf1+hf2 hf=0.6941 ft

Energy equation (A) - (B) :
$z A+\frac{p A}{\gamma}+\frac{V A^{2}}{2 \cdot g}-h m-h f+h P=z B+\frac{p B}{\gamma}+\frac{V B^{2}}{2 \cdot g}$
$h P:=$ solve $\left(z A+\frac{p A}{\gamma}+\frac{V A^{2}}{2 \cdot g}-h m-h f+h P=z B+\frac{p B}{\gamma}+\frac{V B^{2}}{2 \cdot g}, h P\right)$
Then, $h P=18.1568 \quad \mathrm{ft}$
Power delivered by pump: $\quad Q:=\mathrm{V} 1 \cdot\left(\frac{\pi \cdot D 1^{2}}{4}\right) \quad Q=1.9635 \quad$ cfs
$\mathrm{Pp}:=\frac{\mathrm{Y} \cdot \mathrm{Q} \cdot \mathrm{hP}}{550} \quad \mathrm{Pp}=4.0448 \quad$ horsepower

Problem [4]. (Take home). The figure below shows a 900 reducing elbow located in a vertical plane that delivers water to an outlet at section (2) open to the atmosphere. The diameters of sections (1) and (2) are 2.0 m and 1.0 m , respectively. A pressure gage at section (1) reads a value of 200.0 kPa . Determine (a) the water discharge through the elbow, Q; (b) the x-component of the force that the flowing water applies on the elbow; and, (c) the y-component of the force that the flowing water applies on the elbow. Assume negligible energy losses.

NOTE: The volume of water contained within sections (1) and (2) is not known, therefore, you need to provide a reasonable guesstimate for this volume from the information in the figure (e.g., using two cylinders). The volume of water between sections (1) and (2) is required to estimate the weight of the water for the momentum equation.

$$
\begin{aligned}
& \mathrm{D} 1:=2.0 \mathrm{~m} \quad \mathrm{D} 2:=1.0 \mathrm{~m} \quad \mathrm{~g}:=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad \mathrm{y}:=9810 \frac{\mathrm{~N}}{\mathrm{~m}^{3}} \\
& \text { Continuity: } \quad \frac{\pi \cdot \mathrm{D} 1^{2}}{4} \cdot \mathrm{~V} 1=\frac{\pi \cdot \mathrm{D} 2^{2}}{4} \cdot \mathrm{~V} 2 \Rightarrow \mathrm{~V} 1=\left(\frac{\mathrm{D} 2}{\mathrm{D} 1}\right)^{2} \cdot \mathrm{~V} 2 \\
& \text { with }\left(\frac{\mathrm{D} 2}{\mathrm{D} 1}\right)^{2}=0.25 \quad \text {, then, } \mathrm{V} 1=0.25 \cdot \mathrm{~V} 2
\end{aligned}
$$

Energy (1)-(2) with no losses, i.e., Bernoulli's eqn:

Point (1): z1:=0 $\mathrm{p} 1:=200 \cdot 10^{3} \mathrm{~Pa} \quad \mathrm{~V} 1=?$
Point (2): $\quad z 2:=5 \cdot \sin \left(\frac{\pi}{4}\right)+4 \cdot \sin \left(\frac{\pi}{4}\right) \quad z 2=6.364 \mathrm{~m}$

$$
\mathrm{p} 2:=0 \quad \mathrm{v} 2=?
$$

Bernoulli's equation: $\quad \mathrm{z} 1+\frac{\mathrm{p} 1}{\mathrm{~V}}+\frac{\mathrm{V} 1^{2}}{2 \cdot g}=\mathrm{z} 2+\frac{\mathrm{p} 2}{\mathrm{~V}}+\frac{\mathrm{V} 2^{2}}{2 \cdot g}$
replace: V1=0.25.V2 into Bernoulli's equation:

$$
z 1+\frac{p 1}{\gamma}+\frac{(0.25 \cdot v 2)^{2}}{2 \cdot g}=z 2+\frac{p 2}{\gamma}+\frac{\mathrm{V} 2^{2}}{2 \cdot g}
$$

Solving for V2:
$\mathrm{V} 2:=$ solve $\left(\mathrm{z} 1+\frac{\mathrm{p} 1}{\mathrm{~V}}+\frac{(0.25 \cdot \mathrm{~V} 2)^{2}}{2 \cdot g}-\left(z 2+\frac{\mathrm{p} 2}{\mathrm{~V}}+\frac{\mathrm{V} 2^{2}}{2 \cdot g}\right), \mathrm{V} 2,0,100\right)$

$\mathrm{V} 2=17.1313 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{V} 1:=0.25 \cdot \mathrm{~V} 2 \quad \mathrm{~V} 1=4.2828 \frac{\mathrm{~m}}{\mathrm{~s}}$
Discharge: $Q:=\mathrm{V} 2 \cdot\left(\frac{\Pi \cdot D 2^{2}}{4}\right)$
$Q=13.4549 \frac{\mathrm{~m}^{3}}{2}$

Momentum equation:
Estimate volume of water $\operatorname{Vol}:=\frac{\pi \cdot D 1^{2}}{4} \cdot 5+\frac{\pi \cdot D 2^{2}}{4} \cdot 4 \quad=\Rightarrow \quad \operatorname{Vol}=18.8496 \mathrm{~m}^{3} \quad$ Weight: $\mathrm{W}:=\mathrm{V} \cdot \mathrm{Vol} \quad \mathrm{W}=1.8491 \cdot 10^{5} \mathrm{~N}$ -Other forces: $\quad \mathrm{F} 1:=\mathrm{p} 1 \cdot\left(\frac{\pi \cdot \mathrm{D} 1^{2}}{4}\right) \quad \mathrm{F} 1=6.2832 \cdot 10^{5} \mathrm{~N} \quad \mathrm{~F} 2:=\mathrm{p} 2 \cdot\left(\frac{\pi \cdot \mathrm{D} 2^{2}}{4}\right) \quad \mathrm{F} 2=0$

Momentum eqn.x: $\quad F 1 \cdot \cos \left(\frac{\pi}{4}\right)-F x+F 2 \cdot \cos \left(\frac{\pi}{4}\right)=-\rho \cdot Q \cdot V 2 \cdot \cos \left(\frac{\pi}{4}\right)-\rho \cdot Q \cdot V 1 \cdot \cos \left(\frac{\pi}{4}\right)$
$F x:=F 1 \cdot \cos \left(\frac{\pi}{4}\right)+F 2 \cdot \cos \left(\frac{\pi}{4}\right)-\left(-\rho \cdot Q \cdot V 2 \cdot \cos \left(\frac{\pi}{4}\right)-\rho \cdot Q \cdot V 1 \cdot \cos \left(\frac{\pi}{4}\right)\right)$

Momentum eqn.y: $\mathrm{F} 1 \cdot \sin \left(\frac{\pi}{4}\right)+F y-W-F 2 \cdot \sin \left(\frac{\pi}{4}\right)=\rho \cdot Q \cdot V 2 \cdot \sin \left(\frac{\pi}{4}\right)-\rho \cdot Q \cdot V 1 \cdot \sin \left(\frac{\pi}{4}\right)$
$F y:=\rho \cdot Q \cdot V 2 \cdot \sin \left(\frac{\pi}{4}\right)-\rho \cdot Q \cdot V 1 \cdot \sin \left(\frac{\pi}{4}\right)-\left(F 1 \cdot \sin \left(\frac{\pi}{4}\right)-W-F 2 \cdot \sin \left(\frac{\pi}{4}\right)\right) \quad F y=-1 \cdot 3713 \cdot 10^{5} \mathrm{~N}$

