Создать |
---|
Создайте новый расчёт или загрузите существующий документ, чтобы начать работать с ним в облачной версии SMath Studio. Вы сможете редактировать расчёт сразу после создания, а затем получить к нему доступ с любого вашего устройства используя прямую ссылку (используя вашу учётную запись). |
Недавние |
---|
Откройте расчёт, с которым вы недавно работали в облачной версии SMath Studio. Пожалуйста, войдите, чтобы использовать эту функциональность. |
Пожалуйста, войдите или зарегистрируйтесь.
|
Примеры (18) |
---|
Посмотрите примеры расчётов, созданные другими пользователями SMath Studio, чтобы познакомится с различной функциональностью приложения. Вы сможете редактировать открытые документы для их изучения или, к примеру, изменения начальных данных. |
Нахождение нулей полиномов Лагерра
Решение многочленов Лагерра.
Пользователь определяет степень полинома и в результате получает его корни.
Дополнительно показаны графики многочленов Лагерра до 5-той степени включительно.
Нахождение нулей полиномов Эрмита
Решение многочленов Эрмита.
Пользователь определяет степень полинома и в результате получает его корни.
Дополнительно показаны графики многочленов Эрмита до 5-той степени включительно.
Вычисление ускорения свободного падения на поверхности объектов
В примере показано использование закона всемирного тяготения Ньютона для вычисления ускорения свободного падения на поверхности астрономических объектов солнечной системы.
Расчёт производится для восьми планет солнечной системы и Солнца.
Поиск функции от матрицы (Формула Сильвестра)
Вычисление определённой пользователем функции от заданной матрицы по формуле Сильвестра.
В примере также показывается метод получения коэффициентов характеристического многочлена (векового уравнения) по методу Леверрье-Фаддеева.
Решение систем нелинейных уравнений методом Ньютона
Пример алгоритма решения систем нелинейных уравнений (СНУ) методом Ньютона.
Пользователь задаёт уравнения системы (допускается ввод как одного уравнения, так и нескольких) и начальные приближения.
Расчёт вычисления корней СНУ производится с использованием матрицы Якоби. Алгоритм позволяет также задать точность, с которой необходимо получить корни.
В результате работы программа демонстрирует полученные корни и проводит их проверку путём подстановки полученных корней в начальную систему уравнений.
Для анализа работы алгоритма в примере выводится количество итераций (шагов в цикле), за которое удалось прийти к результату.
Вычисление определённого интеграла (метод Симпсона)
Численное интегрирование определённого интеграла по методу Симпсона - приближение графика функции на отрезке параболой.
Пользователь определяет функцию, пределы интегрирование и число итераций, от которого зависит точность метода.
Расчёт ведётся по оптимизированной формуле Симпсона.
В конце расчёта происходит проверка результата, основываясь на встроенной функции численного интегрирования программы.
Матрица Якоби и Якобиан
Алгоритм генерации матрицы Якоби и определение Якобиана.
Пользователь указывает функцию для дальнейшей работы, затем в цикле, путём нахождения частных производных, строится матрица Якоби.
Последним шагом определяются функции для работы с результатом. Все вычисления ведутся символьно, при этом показана возможность получения как символьного так и численного результатов работы алгоритма.
Матрица Гессе и Гессиан
Алгоритм генерации матрицы Гессе и определение Гессиана.
Пользователь указывает функцию для дальнейшей работы, затем в цикле, путём нахождения частных производных, строится матрица Гессе.
Последним шагом определяются функции для работы с результатом. Все вычисления ведутся символьно, при этом показана возможность получения как символьного так и численного результатов работы алгоритма.
Разложение функции в ряд Маклорена
Разложение заданной функции в степенной ряд Маклорена с указанием максимальной степени ряда.
Расчёт балки на двух опорах
Расчёт балки на двух опорах. Результатом вычислений является значения реакций опор и отрисовка расчётной схемы.
Поддерживается задание любого количества сосредоточенных и/или распределённых нагрузок
Все входные и выходные данные полностью поддерживают значения с единицами измерения
Решение трёхдиагональной системы уравнений методом прогонки (алгоритм Томаса)
Алгоритм решения трёхдиагональной системы линейных уравнений по методу прогонки. Метод также известен как алгоритм Томаса.
Пользователь задаёт матрицу коэффициентов уравнений и столбец ответов.
Результат сравнивается с ответом встроенного средства решения линейных уравнений программы.
Нахождение нулей полиномов Лежандра
Решение многочленов Лежандра определённых формулой Родрига.
Пользователь определяет степень полинома и в результате получает его корни.
Дополнительно показаны графики многочленов Лежандра до 5-той степени включительно.
Решение нелинейных уравнений методом дихотомии
Решение нелинейных уравнений методом дихотомии.
Пользователь определяет искомое уравнение, точность решения и интервал, на котором ищется решение.
По окончании вычислений выводится корень уравнения, достигнутая точность и количество итераций, за которое был получен ответ.
Преобразование арабских чисел в римские
Алгоритм преобразования чисел, записанных арабскими цифрами, в римские.
Пользователь определяет арабское число для преобразования. По окончании работы программы выводится ответ в виде римского числа.
Решение нелинейных уравнений методом хорд
Решение нелинейных уравнений методом хорд.
Пользователь определяет искомое уравнение, точность решения и интервал, на котором ищется решение.
По окончании вычислений выводится корень уравнения, достигнутая точность и количество итераций, за которое был получен ответ.
Планетарный механизм с внутренним зацеплением
Анимация в программе, показанная на примере планетарного механизма с внутренним зацеплением
Алгоритм Евклида (определение НОД)
Эффективный метод вычисления наибольшего общего делителя (НОД), также известный как алгоритм Евклида.
Пользователь задаёт два числа для которых будет вычислен НОД. Пример является численным и демонстрирует работу с циклом типа While.
Метод Рунге-Кутта пятого порядка с автоматическим выбором шага
Решение обыкновенных дифференциальных уравнений методом Рунге-Кутта пятого порядка с автоматическим выбором шага.
Пользователь определяет коэффициенты исходного дифференциального уравнения, задачу Коши, границы отрезка и точность работы метода.
Программа преобразовывает коэффициенты уравнения к системе и проводит вычисления по методу Рунге-Кутта пятого порядка. При этом автоматически определяется оптимальный шаг работы алгоритма с учётом требуемой точности.
После вычислений с помощью функций интерполяции кубическими сплайнами строятся графики численного решения.
|