Version 1.0.8034.38340
Functions
Additional components that add new mathematical functions to the SMath Studio program, necessary for solving problems from various fields.
-
Ae("complexNumber")
(x) Exponentially scaled first Airy function of complex argument. -
Aep("complexNumber")
(x) Exponentially scaled derivative of first Airy function of complex argument. -
Ai("complexNumber")
(x) First Airy function, solution of the differential equation y"=xy. The argument can be complex -
Aip("complexNumber")
(x) Derivative of the first Airy function, solution of the differential equation y"=xy. The argument can be complex -
Be("complexNumber")
(x) Exponentially scaled second Airy function of complex argument. -
Bep("complexNumber")
(x) Exponentially scaled first derivative of second Airy function of complex argument. -
beta("1:complexNumber", "2:complexNumber")
(x,y) Beta function or Euler's integral of the first kind. The arguments can be complex -
Bi("complexNumber")
(x) Second Airy function, solution of the differential equation y"=xy. The argument can be complex -
binomial("1:complexNumber", "2:complexNumber")
(a,k) Binomial coefficient, a is real k must be a non negative integer. -
Bip("complexNumber")
(x) Derivative of the second Airy function, solution of the differential equation y"=xy. The argument can be complex -
Chi("complexNumber")
(x) Hyperbolic cosine integral of real argument. -
Ci("complexNumber")
(x) Cosine integral of real argument. -
cn("1:complexNumber", "2:complexNumber")
(u,k) Jacobian elliptic functions cn(u,k) of real arguments. -
csgn("complexNumber")
(x) Complex sign of x. -
Dawson("complexNumber")
(x) Dawson's Integral of real argument. -
dilog("complexNumber")
(x) Dilogarithm function of real argument. -
dn("1:complexNumber", "2:complexNumber")
(u,k) Jacobian elliptic functions dn(u,k) of real arguments. -
Ei("1:complexNumber", "2:complexNumber")
(n,x) Exponential integral Ei. n in an integer, x is real. -
FresnelC("complexNumber")
(x) Fresnel integral C(x) of real argument. -
FresnelS("complexNumber")
(x) Fresnel integral S(x) of real argument. -
H1e("1:complexNumber", "2:complexNumber")
(v,z) Exponentially scaled Hankel function of real order v and complex argument z (1st kind). Argument z must be nonzero and is considered in the cut plane -pi < arg(z) <= pi. -
h1v("1:complexNumber", "2:complexNumber")
(v,x) Spherical Hankel function of real order v and complex argument z (1st kind). Argument z must be nonzero and is considered in the cut plane -pi < arg(z) <= pi. -
H1v("1:complexNumber", "2:complexNumber")
(v,z) Hankel function of real order v and complex argument z (1st kind). Argument z must be nonzero and is considered in the cut plane -pi < arg(z) <= pi. -
H2e("1:complexNumber", "2:complexNumber")
(v,z) Exponentially scaled Hankel function of real order v and complex argument z (2nd kind). Argument z must be nonzero and is considered in the cut plane -pi < arg(z) <= pi. -
h2v("1:complexNumber", "2:complexNumber")
(v,x) Spherical Hankel function of real order v and complex argument z (2nd kind). Argument z must be nonzero and is considered in the cut plane -pi < arg(z) <= pi. -
H2v("1:complexNumber", "2:complexNumber")
(v,z) Hankel function of real order v and complex argument z (2nd kind). Argument z must be nonzero and is considered in the cut plane -pi < arg(z) <= pi. -
hyp1f1("1:complexNumber", "2:complexNumber", "3:complexNumber")
(a,b,x) Confluent hypergeometric function 1F1 with real arguments. -
hyp1f2("1:complexNumber", "2:complexNumber", "3:complexNumber", "4:complexNumber")
(a,b,c,x) Hypergeometric function 1F2 with real arguments. -
hyp2f0("1:complexNumber", "2:complexNumber", "3:complexNumber")
(a,b,x) Hypergeometric function 2F0 with real arguments. -
hyp2f1("1:complexNumber", "2:complexNumber", "3:complexNumber", "4:complexNumber")
(a,b,c,x) Gauss hypergeometric function 2F1 with real arguments. -
hyp3f0("1:complexNumber", "2:complexNumber", "3:complexNumber", "4:complexNumber")
(a,b,c,x) Hypergeometric function 3F0 with real arguments. -
ibeta("1:complexNumber", "2:complexNumber", "3:complexNumber")
(a,b,x) Incomplete beta integral; the domain of definition is 0<=x<=1, a>0 and b>0. -
ibetai("1:complexNumber", "2:complexNumber", "3:complexNumber")
(a,b,x) Inverse of incomplete beta integral; the domain of definition is a>0 and b>0. -
Ie("1:complexNumber", "2:complexNumber")
(v,z) Exponentially scaled modified Bessel function of real order v and complex argument z. Argument z is considered in the cut plane -pi < arg(z) <= pi. -
igam("1:complexNumber", "2:complexNumber")
(a,x) Incomplete gamma integral; both arguments must be real and positive. -
igamc("1:complexNumber", "2:complexNumber")
(a,x) Complemented incomplete gamma integral; both arguments must be real and positive. -
igami("1:complexNumber", "2:complexNumber")
(a,x) Inverse of complemented imcomplete gamma integral of real arguments. -
Iv("1:complexNumber", "2:complexNumber")
(v,z) Modified Bessel function of real order v and complex argument z. Argument z is considered in the cut plane -pi < arg(z) <= pi. -
Je("1:complexNumber", "2:complexNumber")
(v,z) Exponentially scaled Bessel function of real order v and complex argument z. Argument z is considered in the cut plane -pi < arg(z) <= pi. -
jv("1:complexNumber", "2:complexNumber")
(v,x) Spherical Bessel function of real order v and complex argument z. Argument z is considered in the cut plane -pi < arg(z) <= pi. -
Jv("1:complexNumber", "2:complexNumber")
(v,z) Bessel function of real order v and complex argument z. Argument z is considered in the cut plane -pi < arg(z) <= pi. -
Ke("1:complexNumber", "2:complexNumber")
(v,z) Exponentially scaled modified Bessel function of the third kind of real order v and complex argument z. Argument z must be nonzero and is considered in the cut plane -pi < arg(z) <= pi. -
Kv("1:complexNumber", "2:complexNumber")
(v,z) Modified Bessel function of the third kind of real order v and complex argument z. Argument z must be nonzero and is considered in the cut plane -pi < arg(z) <= pi. -
lbeta("1:complexNumber", "2:complexNumber")
(x,y) Natural logarithm of beta function. Arguments are considered in the cut plane -pi < arg(z) <= pi. -
LegendreE("1:complexNumber", "2:complexNumber")
(x,k) Legendre's canonical incomplete elliptic integral of the second kind with real arguments. -
LegendreEc("complexNumber")
(k) Legendre's complete elliptic integral of the second kind with real argument. -
LegendreEc1("complexNumber")
(k) Associated Legendre's complete elliptic integral of the second kind with real argument. -
LegendreF("1:complexNumber", "2:complexNumber")
(x,k) Legendre's canonical incomplete elliptic integral of the first kind with real arguments. -
LegendreKc("complexNumber")
(k) Legendre's complete elliptic integral of the first kind with real argument. -
LegendreKc1("complexNumber")
(k) Associated Legendre's complete elliptic integral of the first kind with real argument. -
LegendreP("1:complexNumber", "2:complexNumber", "3:complexNumber")
(x,n,k) Legendre's canonical incomplete elliptic integral of the third kind with real arguments. -
LegendrePc("1:complexNumber", "2:complexNumber")
(n,k) Legendre's complete elliptic integral of the third kind with real arguments. -
LegendrePc1("1:complexNumber", "2:complexNumber")
(n,k) Associated Legendre's complete elliptic integral of the third kind with real arguments. -
lgam("complexNumber")
(z) Natural logarithm of gamma function. Argument z is considered in the cut plane -pi < arg(z) <= pi. -
mask("complexNumber")
(x) Masks and unmasks the partial loss of precision error. If called with x = 0 that error message is disabled, if called with x != 0 that error message is enabled. Returns the previous state; default is unmasked. -
phi("1:complexNumber", "2:complexNumber")
(u,k) Amplitude of jacobian elliptic functions phi(u,k) of real arguments. -
plm("1:complexNumber", "2:complexNumber", "3:complexNumber")
(l,m,x) Normalized first kind Legendre polynomials and associated functions of integer degree l and integer order m. -
Plm("1:complexNumber", "2:complexNumber", "3:complexNumber")
(l,m,x) First kind Legendre polynomials and associated functions of degree l and integer order m. Plm(l,m,x) = (-1)^m (1-x^2)^(m/2) d^m( Pn(n,x) )/dx^m where l and x must be real and Pn(n,x) is the Legendre polynomial. -
Psi("complexNumber")
(z) Logarithmic derivative of the gamma function. The argument can be complex -
Qlm("1:complexNumber", "2:complexNumber", "3:complexNumber")
(l,m,x) Second kind Legendre functions of degree l, integer order m and argument 0<=x<1. -
Rd("1:complexNumber", "2:complexNumber", "3:complexNumber")
(x,y,z) Carlson's incomplete elliptic integral of the second kind with real argument. -
Rf("1:complexNumber", "2:complexNumber", "3:complexNumber")
(x,y,z) Carlson's incomplete elliptic integral of the first kind with real arguments. -
rgam("complexNumber")
(x) Returns one divided by the gamma function of the argument. -
Rj("1:complexNumber", "2:complexNumber", "3:complexNumber", "4:complexNumber")
(x,y,z,p) Carlson's incomplete elliptic integral of the third kind with real argument. -
round("complexNumber")
(x) Round real x to nearest or even integer number. -
sfact("complexNumber")
(n) Semifactorial of integer n. -
Shi("complexNumber")
(x) Hyperbolic sine integral of real argument. -
Si("complexNumber")
(x) Sine integral of real argument. -
signum("complexNumber")
(x) Sign of x. -
sn("1:complexNumber", "2:complexNumber")
(u,k) Jacobian elliptic functions sn(u,k) of real arguments. -
Struve("1:complexNumber", "2:complexNumber")
(v,x) Computes the Struve function of real order v and real argument x. Negative x is rejected unless v is an integer. -
Ye("1:complexNumber", "2:complexNumber")
(v,z) Exponentially scaled Neumann function of real order v and complex argument z. Argument z must be nonzero and is considered in the cut plane -pi < arg(z) <= pi. -
Yl("1:complexNumber", "2:complexNumber", "3:complexNumber")
(l,theta,phi) Sequence of spherical harmonic of integer degree l, integer order m=0..l, latitude theta in [-PI,PI] and longitude phi. -
Ylm("1:complexNumber", "2:complexNumber", "3:complexNumber", "4:complexNumber")
(l,m,theta,phi) Spherical harmonic of integer degree l, integer order m, latitude theta in [-PI,PI] and longitude phi. -
yv("1:complexNumber", "2:complexNumber")
(v,x) Spherical Neumann function of real order v and complex argument z. Argument z must be nonzero and is considered in the cut plane -pi < arg(z) <= pi. -
Yv("1:complexNumber", "2:complexNumber")
(v,z) Neumann function of real order v and complex argument z. Argument z must be nonzero and is considered in the cut plane -pi < arg(z) <= pi. -
Zeta("complexNumber")
(x) Riemann zeta function of real argument. x must be positive -
Zeta2("1:complexNumber", "2:complexNumber")
(x,q) Riemann zeta function of two arguments. It is the sum, for k integer ranging from 0 to infinity, of (k+q)^-x where q is a positive integer and x > 1.