Created by ALGLIB Project (http://www.alglib.net/) in the scope of SMath project. Published by Вячеслав Мезенцев.
This is Open Source project. Sources shared under MIT Licence and available in public SVN repository.

Features of ALGLIB 3.18.0

Version 1.0.8025.20709

Functions

Additional components that add new mathematical functions to the SMath Studio program, necessary for solving problems from various fields.

  1. al_airy("number")
    (x) returns the Airy functions: Ai(x), Ai'(x), Bi(x) and Bi'(x).
  2. al_beta("1:number", "2:number")
    (a,b) returns the Beta functions.
  3. al_convr1d("1:vector", "2:vector")
    (vx,vy) 1-dimensional real convolution.
  4. al_convr1dinv("1:vector", "2:vector")
    (vx,vy) 1-dimensional real deconvolution.
  5. al_fftc1d("vector")
    (vx) 1-dimensional complex FFT.
  6. al_fftc1dinv("vector")
    (vx) 1-dimensional complex inverse FFT.
  7. al_lspline("1:vector", "2:vector", "3:number")
    (vx,vy,x) cubic spline linear at the endpoints.
  8. al_nleqsolve("1:vector", "2:function")
    (x0, f) Levenberg-Marquardt-like nonlinear solver.
  9. al_nleqsolve("1:vector", "2:number", "3:function")
    (x0, epsf, f) Levenberg-Marquardt-like nonlinear solver.
  10. al_nleqsolve("1:vector", "2:number", "3:number", "4:function")
    (x0, stepmax, epsf, f) Levenberg-Marquardt-like nonlinear solver.
  11. al_nleqsolve("1:vector", "2:number", "3:number", "4:function", "5:function")
    (x0, stepmax, epsf, f, j) Levenberg-Marquardt-like nonlinear solver.
  12. al_polyroots("vector")
    (vx) returns all roots of the polynomial.
  13. al_pspline("1:vector", "2:vector", "3:number")
    (vx,vy,x) cubic spline parabolic at the endpoints.
  14. al_rkckadapt("1:function", "2:function", "3:number")
    (ode,y(x),xmax) uses the fourth-order Runge-Kutta-Cash-Karp adaptive method.
  15. al_rkckadapt("1:function", "2:function", "3:number", "4:number")
    (ode,y(x),xmax,steps) uses the fourth-order Runge-Kutta-Cash-Karp adaptive method.
  16. al_rkckadapt("1:vector", "2:number", "3:number", "4:number", "5:function")
    (ics,xmin,xmax,steps,D(x,y)) uses the fourth-order Runge-Kutta-Cash-Karp adaptive method.