Created by DotNumerics Project (http://www.dotnumerics.com/) in the scope of SMath project. Published by Вячеслав Мезенцев.
This is Open Source project. Sources shared under MIT Licence and available in public SVN repository.

Features of DotNumerics

Version 1.1.8269.16536

Functions

Additional components that add new mathematical functions to the SMath Studio program, necessary for solving problems from various fields.

  1. dn_AdamsMoulton("1:function", "2:function", "3:number")
    (ode,y(x),xmax) uses the Adams-Moulton method.
  2. dn_AdamsMoulton("1:function", "2:function", "3:number", "4:number")
    (ode,y(x),xmax,steps) uses the Adams-Moulton method.
  3. dn_AdamsMoulton("1:vector", "2:number", "3:number", "4:number", "5:function")
    (ics,xmin,xmax,steps,D(x,y)) uses the Adams-Moulton method.
  4. dn_ExplicitRK45("1:function", "2:function", "3:number")
    (ode,y(x),xmax) uses the explicit Runge-Kutta (4)5 method.
  5. dn_ExplicitRK45("1:function", "2:function", "3:number", "4:number")
    (ode,y(x),xmax,steps) uses the explicit Runge-Kutta (4)5 method.
  6. dn_ExplicitRK45("1:vector", "2:number", "3:number", "4:number", "5:function")
    (ics,xmin,xmax,steps,D(x,y)) uses the explicit Runge-Kutta (4)5 method.
  7. dn_GearsBDF("1:function", "2:function", "3:number")
    (ode,y(x),xmax) uses the Gear’s BDF method.
  8. dn_GearsBDF("1:function", "2:function", "3:number", "4:number")
    (ode,y(x),xmax,steps) uses the Gear’s BDF method.
  9. dn_GearsBDF("1:vector", "2:number", "3:number", "4:number", "5:function")
    (ics,xmin,xmax,steps,D(x,y)) uses the Gear’s BDF method.
  10. dn_ImplicitRK5("1:function", "2:function", "3:number")
    (ode,y(x),xmax) uses the implicit Runge-Kutta 5 method.
  11. dn_ImplicitRK5("1:function", "2:function", "3:number", "4:number")
    (ode,y(x),xmax,steps) uses the implicit Runge-Kutta 5 method.
  12. dn_ImplicitRK5("1:vector", "2:number", "3:number", "4:number", "5:function")
    (ics,xmin,xmax,steps,D(x,y)) uses the implicit Runge-Kutta 5 method.
  13. dn_LinAlgEigenvalues("matrix")
    ( A ) computes the eigenvalues of a square matrix (general, symmetric, symmetric band and complex general matrices).
  14. dn_LinAlgEigenvectors("matrix")
    ( A ) computes the eigenvectors of a square matrix (general, symmetric, symmetric band and complex general matrices).
  15. dn_LinAlgLLS_COF("1:matrix", "2:vector")
    ( A, B ) computes the minimum-norm solution to a real linear least squares problem. Using a omplete orthogonal factorization of A.
  16. dn_LinAlgLLS_QRorLQ("1:matrix", "2:vector")
    ( A, B ) computes the minimum-norm solution to a real linear least squares problem. Using a QR or LQ factorization of A.
  17. dn_LinAlgLLS_SVD("1:matrix", "2:vector")
    ( A, B ) computes the minimum-norm solution to a real linear least squares problem. Using the singular value decomposition of A.
  18. dn_LinAlgSolve("1:matrix", "2:vector")
    ( A, B ) computes the solution to a real system of linear equations (general, band and tridiagonal matrices): A * X = B.
  19. dn_LinAlgSVD("matrix")
    ( A ) computes the singular value decomposition (SVD) of a real M-by-N matrix: A = U * S * transpose(V).
  20. dn_MatrixInverse("matrix")
    ( A ) calculate the inverse matrix.